
CSCI2510 Computer Organization

Lecture 05: Program Execution

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 2.3~2.7, 2.10, 4

mailto:mcyang@cse.cuhk.edu.hk

Recall: Program Execution

• A computer is governed by instructions.

– To perform a given task, a program consisting of a list of

machine instructions is stored in the memory.

• Data to be used as operands are also stored in the memory.

– Individual instructions are brought from the memory into the

processor, one after another, in a sequential way (normally).

– The processor executes the specified operation/instruction.

CSCI2510 Lec05: Program Execution 2022-23 T1 2

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 3

Assembly Language

• Machine instructions are represented by 0s and 1s.

→ Such patterns are awkward to deal with by humans!

→We use symbolic names to represent 0/1 patterns!

• Assembly Language: a complete set of such

symbolic names and rules for their use constitutes a

programming language.

– Syntax: the set of rules for using the mnemonics or

notations and for specifying complete instructions/programs

– Mnemonics: acronyms to represent instruction operations

• E.g. Load → LD, Store → ST, Add → ADD, etc.

– Notations: shorthand for registers or memory locations

• E.g. register 3 → R3, a particular memory location → LOC

CSCI2510 Lec05: Program Execution 2022-23 T1 4

Assembly Language Syntax

• Three-operand Instruction:

operation dest, src1, src2

• E.g. “Add A, B, C” means “A ← [B] + [C]”

– Note: We use [X] to represent the content at location X.

• Two-operand Instruction:

operation dest, src

• E.g. “Move A, B” means “A ← [B]”

• E.g. “Add A, B” means “A ← [A] + [B]”

– Note: Operand A is like both the source and the destination.

• One-operand Instruction:

– Some PCs have a special register called accumulator (ACC).

• E.g. “Add B” means “ACC ← ACC + [B]”

• E.g. “Load B” means “ACC ← [B]”

• E.g. “Store B” means “B ← ACC”

CSCI2510 Lec05: Program Execution 2022-23 T1 5

Some machines may put
destination last:

operation src, dest

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 6

lw $0, 0($2)

lw $1, 4($2)

sw $1, 0($2)

sw $0, 4($2)

Recall: Language Translation

CSCI2510 Lec05: Program Execution 2022-23 T1 7

https://gerardnico.com/code/lang/machine

https://clip2art.com/explore/Boy%20clipart%20teacher/

High-level Language

Assembly Language

Machine Language

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

TEMP = V(k);

V(k) = V(k+1);

V(k+1) = TEMP;

lw: loads a word from memory into a register

sw: saves a word from a register into RAM

$0,$1,$2: registers

0($2): treats the value of register $2 + 0 bytes as a location

4($2): treats the value of register $2 + 4 bytes as a location

0000 1001 1100 0110 1010 1111 0101 1000

1010 1111 0101 1000 0000 1001 1100 0110

1100 0110 1010 1111 0101 1000 0000 1001

0101 1000 0000 1001 1100 0110 1010 1111

C/Java
Compiler

Fortran
Compiler

MIPS Assembler

8
Memory

Executable

Program

first instruction

Generating/Executing a Program

• Compiler: Translate a high-level language source

programs into assembly language source programs

• Assembler: Translate assembly language source

programs into object files of machine instructions

• Linker: Combine the contents of object files and library

files into one object/executable program

– Library File: Collect useful subroutines of application programs

• Loader: Load the program into memory and load the

address of the first instruction into program counter (PC)

CSCI2510 Lec05: Program Execution 2022-23 T1

Source

File
Source

File

Object

File

Object

ProgramLinker

Library

File
Library

File

Source

File
Source

File

Source

File

High-Level

Language

Source

File
Source

File

Source

File

Assembly

Language

Loader

Disk
CPU

PC

Compiler Assembler

Activities in a Computer: Instructions

• A computer is governed by instructions.

– To perform a given task, a program consisting of a list of

machine instructions is stored in the memory.

• Data to be used as operands are also stored in the memory.

– Individual instructions are brought from the memory into the

processor, one after another, in a sequential way (normally).

– The processor executes the specified operation/instruction.

CSCI2510 Lec05: Program Execution 2022-23 T1 9

An Example of Program Execution

• Considering a program

of 3 instructions:

– I0: Load R0, LOC

• Reads the contents of a

memory location LOC

• Loads them into

processor register R0

– I1: Add R2, R0, R1

• Adds the contents of

registers R0 and R1

• Places their sum into

register R2

– I2: Store R2, LOC

• Copies the operand in

register R2 to memory

location LOC

CSCI2510 Lec05: Program Execution 2022-23 T1 10

n general purpose registers

PC

IR

R0

R1

Rn-1

Control

ALU

Processor-Memory Interface

Memory

Processor

…

Program Counter
(special register)

Instruction

Register
(special register)

R2

PC: contains the memory address of the NEXT instruction

to be fetched and executed.

IR: holds the CURRENT instruction that is being executed.

R0~Rn-1: n general-purpose registers.

PC →

I0:LoadI1:AddI2:Store

I0 I1 I2

LOC

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 11

CSCI2510 Lec05: Program Execution 2022-23 T1 12

• Consider a machine:

– RISC instruction set

– 32-bit word, 32-bit instruction

– Byte-addressable memory

• Given the task 𝐶=𝐴+𝐵 (Lec04)

– Implemented as C ← [A] + [B]

– Possible RISC-style program

segment:
• Load R2, A

• Load R3, B

• Add R4, R2, R3

• Store R4, C

Instruction Execution & Sequencing (1/3)

data for the program

data for the program

data for the program

CSCI2510 Lec05: Program Execution 2022-23 T1 13

• Assume the 4 instructions

are loaded in successive

memory locations:

– Starting at location i

– The 2nd, 3rd, 4th instructions

are at i + 4, i + 8, and i + 12

• Each instruction is 4 bytes

• To execute this program

– The program counter (PC)

register in the processor

should be loaded with the

address of the 1st instruction.

• PC: holds the address of the

next instruction to be executed.

Instruction Execution & Sequencing (2/3)

four-

instruction

program

segment

data for the program

data for the program

data for the program

CSCI2510 Lec05: Program Execution 2022-23 T1 14

Instruction Execution & Sequencing (3/3)

four-

instruction

program

segment

data for the program

data for the program

data for the program

PC →

• Straight-Line Sequencing:

– CPU fetches and executes

instructions indicated by PC,

one at a time, in the order of

increasing addresses.

1) Instruction Fetch:

• IR ← [[PC]]

• PC ← [PC] + 4 (32-bit word)
✓ PC contains the memory address

of the next instruction.

✓ IR holds the current instruction.

2) Instruction Execute:

• Interpret (or decode) IR

• Perform the operation

Class Exercise 5.1

• Consider a task of adding n num:

– The symbolic memory addresses of the

n numbers: NUM1, NUM2, …, NUMn

– The result is in memory location SUM.

• Please write the program segment to

add n num into R2.

• Answer:

CSCI2510 Lec05: Program Execution 2022-23 T1 15

Student ID:

Name:

Date:

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 17

Branching: Implementing a Loop (1/2)

• The body of the loop:

– Start: at location LOOP

– Body: the repeated task

• E.g. “Load-Add” instructions

– End: at Branch_if_[R2]>0

• Assume that

– n is stored in memory location N.

– R2 represents the number of
times (i.e. n) the loop is executed.

• Within the body of the loop,

Subtract R2, R2, #1

– Decreasing the contents of R2

by 1 each time through the loop.
CSCI2510 Lec05: Program Execution 2022-23 T1 18

LOOP

LOOP

N n

Branching: Implementing a Loop (2/2)

• How to “jump back” to LOOP?

 Branch: loads a new

memory address (called

branch target) into the PC.

 Conditional Branch:

causes a branch only if a

specified condition is

satisfied.

• Branch_if_[R2]>0 LOOP

– A conditional branch

instruction that causes

branch to location LOOP.

– Condition: If the contents of

R2 are greater than zero.
CSCI2510 Lec05: Program Execution 2022-23 T1 19

LOOP

LOOP

N

if [R2] <= 0

if [R2] > 0

n

Class Exercise 5.2

• The below program intends to adding a list of n
numbers. In which, we want to use the indirect

addressing to access successive numbers in the list.

• Please fill in the blank field below:

CSCI2510 Lec05: Program Execution 2022-23 T1 20

LABEL OPCODE OPERAND COMMENT

Load R2, N Load the size of the list.

Clear R3 Initialize sum to 0.

Move R4, addr NUM1 Get address of the first number.

LOOP: Load Get the next number.

Add R3, R3, R5 Add this number to sum.

Add R4, R4, #4 Increment the pointer to the list.

Subtract R2, R2, #1 Decrement the counter.

Branch_if_[R2]>0 LOOP Branch back if not finished.

Store R3, SUM Store the final sum.

An Example of Nested Loops

CSCI2510 Lec05: Program Execution 2022-23 T1 22

Chap. 2.12.2, Computer Organization and Embedded Systems (6th Ed.)

LOOP1:

LOOP2:

Branch_if_[R5]> [R7] LOOP2

Branch_if_[R4]≥ [R2] LOOP1

addr T

addr P

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 23

Condition Codes (1/2)

CSCI2510 Lec05: Program Execution 2022-23 T1 24

Common Condition Flags

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out occurs; otherwise, cleared to 0

• Operations performed by the processor typically

generate number results of positive, negative, or zero.

– E.g., Subtract R2, R2, #1 (in the Loop program)

• Condition Code Flags: keep the information about

the results of the “most recent” instruction.

– The subsequent instruction may use it for different purposes.

– Condition Code Register (or Status Register): groups

and stores these flags in a special register in the processor.

Condition Codes (2/2)

• Consider the Conditional Branch example:

– If condition codes are used, the branch instruction

(Branch_if_[R2]>0 LOOP) could be simplified as:

Branch>0 LOOP

without indicating the register involved in the test.

– This new instruction causes a branch if neither N nor Z is 1.

• The subtract instruction would cause both N and Z flags to be

cleared to 0 if R2 is still greater than 0.

CSCI2510 Lec05: Program Execution 2022-23 T1 25

Common Condition Flags

N (negative) Set to 1 if the result is negative; otherwise, cleared to 0

Z (zero) Set to 1 if the result is 0; otherwise; otherwise, cleared to 0

V (overflow) Set to 1 if arithmetic overflow occurs; otherwise, cleared to 0

C (carry) Set to 1 if a carry-out occurs; otherwise, cleared to 0

Recall: Overflow in Integer Arithmetic

• Overflow: The result of an arithmetic operation does

not fall within the representable range.
– In Unsigned Number Arithmetic:

• Rule: A carry-out of 1 from the MSB-bit always indicates an overflow.

– E.g. (1111)2 + (0001)2 = (1 0000)2  overflowed

– E.g. (0111)2 + (0001)2 = (0 1000)2  no overflow

– In 2’s-complement Signed Number Arithmetic:

• The carry-out bit from the sign-bit is not an indicator of overflow.

– E.g. (+7)10 + (+4)10 = (0111)2 + (0100)2 = (0 1011)2 = (-5)10

– E.g. (-4)10 + (-6)10 = (1100)2 + (1010)2 = (1 0110)2 = (+6)10

• Observation: Addition of opposite sign numbers never causes overflow.

– E.g. (+7)10 + (-6)10 = (0111)2 + (1010)2 = (0001)2 = (+1)10  no overflow

• Rule: If the two numbers are the same sign and the result is the

opposite sign, we say that an overflow has occurred.

– E.g. (+7)10 + (+4)10 = (0111)2 + (0100)2 = (1011)2 = (-5)10  overflowed

– E.g. (-4)10 + (-6)10 = (1100)2 + (1010)2 = (0110)2 = (+6)10  overflowed

CSCI2510 Lec05: Program Execution 2022-23 T1 26

Class Exercise 5.3

CSCI2510 Lec05: Program Execution 2022-23 T1 27

• Given two 4-bit registers R1 and R2 storing signed

integers in 2’s-complement format. Please specify the
condition flags that will be affected by Add R2, R1:

if 𝑅1 = 2 10 = 0010 2, 𝑅2 = –5 10 = 1011 2

Answer: __________________________________

if 𝑅1 = 2 10 = 0010 2, 𝑅2 = –2 10 = 1110 2

Answer: __________________________________

if 𝑅1 = 7 10 = 0111 2, 𝑅2 = 1 10 = 0001 2

Answer: __________________________________

if 𝑅1 = 5 10 = 0101 2, 𝑅2 = −2 10 = 1110 2

Answer: __________________________________

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 29

Branch vs. Subroutine

• Branch:

– The instruction jumping to any instruction by

loading its memory address into PC.

• It’s also common to perform a particular

task many times on different values.

• Subroutine/Function Call

– Subroutine: a block of instructions that will be

executed each time when calling.

– Subroutine/Function Call: when a program

branches to and back from a subroutine.

• Call: the instruction branching to the subroutine.

• Return: the instruction branching back to the caller.

– “Stack” is essential for subroutine calls.
CSCI2510 Lec05: Program Execution 2022-23 T1 30

…

LOOP: LOOP

Body

Branch

…

…

Call

…

FUNC: FUNC

Body

Return

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 31

Stack

• Stack is a list of data elements (usually words):

– Elements can only be removed at one end of the list.

• This end is called the top, and the other end is called the bottom.

• Examples: a stack of coins, plates on a tray, a pile of books, etc.

– Push: Placing a new item at the top end of a stack

– Pop: Removing the top item from a stack

– Stack is often called LIFO or FILO stack:

• Last-In-First-Out (LIFO): The last item is the first one to be removed.

• First-In-Last-Out (FILO): The first item is the last one to be removed.

CSCI2510 Lec05: Program Execution 2022-23 T1 32

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

top

bottom

• Modern processors usually provide native support to

stack (called processor stack).

Stack

(TOP)
SP

Processor Stack (1/2)

CSCI2510 Lec05: Program Execution 2022-23 T1 33

– A processor stack can be

implemented by using a portion

of the main memory.

• Data elements of a stack occupy

successive memory locations.

• The first element is placed in

location BOTTOM (larger address).

• The new elements are pushed

onto the TOP of the stack.

– Stack Pointer (SP): a special

processor register to keep track

of the address of the TOP item

of processor stack.

Memory

Stack

(TOP)
SP

Processor Stack (2/2)

• Given a stack of word data items, and consider a

byte-addressable memory with a 32-bit word:

CSCI2510 Lec05: Program Execution 2022-23 T1 34

– Push an item in Rj onto the stack:
Subtract SP, SP, #4

Store Rj, (SP)

• The Subtract instruction first subtracts 4 from the

contents of SP and places the result in SP.

• The Store instruction then places the content of Rj

onto the stack.

– Pop the top item into Rj
Load Rj, (SP)

Add SP, SP, #4

• The Load instruction first loads the top value from the

stack into register Rj

• The Add instruction then increments the stack pointer

by 4.

Recall: Additional Addressing Modes

• Most CISC processors have all of the five basic

addressing modes—Immediate, Register, Absolute,

Indirect, and Index.

• Three additional addressing modes are often found in

CISC processors:

CSCI2510 Lec05: Program Execution 2022-23 T1 35

Address Mode Assembler Syntax Addressing Function

1*) Autoincrement (𝑅𝑖) +
𝐸𝐴 = 𝑅𝑖
𝑅𝑖 = 𝑅𝑖 + 𝑆

2*) Autodecrement −(𝑅𝑖)
𝑅𝑖 = 𝑅𝑖 − 𝑆
𝐸𝐴 = 𝑅𝑖

3*) Relative 𝑋(𝑃𝐶) 𝐸𝐴 = 𝑃𝐶 + 𝑋

EA: effective address

X: index value

S: increment/decrement step

Class Exercise 5.4

CSCI2510 Lec05: Program Execution 2022-23 T1 36

(a) Before Push & Pop (b) After Push (c) After Pop

X X

• Given the contents of the stack and the register Rj as

below. Specify the location of SP and the content of

register Rj after one push and one pop operations

are performed consecutively.

19

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 38

Revisit: Subroutine

• Recall:

– When a program branches to a subroutine

we say that it is calling the subroutine.

– After a subroutine calling, the subroutine is

said to return to the program that called it.

• Continuing immediately after the instruction that

called the subroutine.

CSCI2510 Lec05: Program Execution 2022-23 T1 39

…

Call

…

FUNC: FUNC

Body

Return

• However, the subroutine may be called from any

places in a calling program.

• Thus, provision must be made for returning to the

appropriate location.

– That is, the content of the PC must be saved by the Call

instruction to enable correct return to the calling program.

• Subroutine Linkage method: the way makes it
possible to Call and Return from subroutines.

• The simplest method: saving the return address in a

special processor register called the link register.

– The Call instruction can be implemented as a special

branch instruction:

 Keep the content of the PC in the link register.

 Branch to the target address specified by Call instruction.

– The Return instruction can be implemented as a special

branch instruction as well:

• Branch to the address kept in the link register by Return

instruction.

Subroutine Linkage

CSCI2510 Lec05: Program Execution 2022-23 T1 40

Example of Subroutine Linkage

CSCI2510 Lec05: Program Execution 2022-23 T1 41

204

1000

204

 Keep [PC] into

the link register.

 Branch to the

target address
specified by Call

Branch back to

the address kept

in the link register
by Return

Enough?Enough?

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 42

Subroutine Nesting (1/3)

• Subroutine Nesting: One subroutine calls another

subroutine or itself (i.e. recursion).

– If the return address of the second call is also stored in the

link register, the first return address will be lost … ERROR!

– Subroutine nesting can be carried out to ANY DEPTH …

CSCI2510 Lec05: Program Execution 2022-23 T1 43

https://slideplayer.com/slide/7603076/

Subroutine Nesting (2/3)

• Observation: The return address needed for the first

return is the last one generated in the nested calls.

– That is, return addresses are generated and used in a

last-in–first-out (LIFO) order.

CSCI2510 Lec05: Program Execution 2022-23 T1 44

Subroutine Nesting (3/3)

• Processor stack is useful to store subroutine linkage:

– Call instruction:

 Store the contents of the PC in the link register

→ Push the contents of the PC to the processor stack

 Branch to the target address specified by Call instruction.

→ (Unchanged)

– Return instruction:

• Branch to the address contained in the link register

→ Branch to the address popped out from the processor stack

CSCI2510 Lec05: Program Execution 2022-23 T1 45

top

bottom

main

func1()

Outline

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 46

Parameter Passing

• Parameter Passing: The exchange of information

between a calling program and a subroutine.

– When calling a subroutine, a program must provide the

parameters (i.e., operands or their addresses) to be used.

– Later, the subroutine returns other parameters, which are

the results of the computation.

CSCI2510 Lec05: Program Execution 2022-23 T1 47

http://coder-tronics.com/c-programming-functions-pt1/

Parameter Passing via Registers

CSCI2510 Lec05: Program Execution 2022-23 T1 48

• The simplest way is placing parameters in registers.

• This program can be implemented as a subroutine:

– R2 & R4 pass the list size & the address of the first num;

– R3 passes back the sum computed by the subroutine.

R4

R3

R3 R3

Calling Program

Subroutine

R2
addr NUM1

Parameter Passing via Stack (1/3)

• What if there are more parameters than registers?

• What if the subroutine calls itself (recursion)?

• The processor stack once again provides a good

scheme to pass (an arbitrary number of) parameters.

CSCI2510 Lec05: Program Execution 2022-23 T1 49

• What can we push onto stack?

 We shall push all parameters

to be computed onto stack.

 We shall also push the

contents of all “to-be-used”

registers onto the stack.

 We may also push the

computed result before the

return to the calling program.

addrNUM1

Parameter Passing via Stack (2/3)

• Consider the program that adds a list of n numbers. It

now uses the processor stack for parameter passing.

CSCI2510 Lec05: Program Execution 2022-23 T1 50

Calling Program

 push all parameters to be computed onto stack

addr NUM1

Parameter Passing via Stack (3/3)

CSCI2510 Lec05: Program Execution 2022-23 T1 51

Subroutine

4(SP)

8(SP)

12(SP)

16(SP)

20(SP)

 push “to-be-

used” registers

 push the

computed result

addr NUM1

Class Exercise 5.5

• In the example program that uses the processor

stack for parameter passing, the result is passed
back to the calling program by Store R3, 20(SP).

To pass back the result, can we use the instruction
Store R3, 16(SP) instead?

CSCI2510 Lec05: Program Execution 2022-23 T1 52

Subroutine Linkage & Para. Passing

• Recall: Processor stack is also

useful to store subroutine

linkage (i.e., return address).

– [PC] is pushed onto stack.

CSCI2510 Lec05: Program Execution 2022-23 T1 54

Subroutine

addrNUM1

Calling

Program

return address

Any problems?

Any problems?

• What kind of parameters can we pass?

• Passing by Value

– The actual number is passed by an immediate value.

• Passing by Reference (more powerful, be careful!)

– Instead of passing the actual values in the list, the routine

passes the starting address (i.e. reference) of the number.

CSCI2510 Lec05: Program Execution 2022-23 T1 55

Parameter Passing by Value / Reference

https://www.mathwarehouse.com/programming/passing

-by-value-vs-by-reference-visual-explanation.php

Class Exercise 5.6

CSCI2510 Lec05: Program Execution 2022-23 T1 56

LABEL OPCODE OPERAND COMMENT

Move R2, addr NUM1 Push parameters onto stack

Subtract SP, SP, #4

Store R2, (SP)

Store R2, N

Subtract SP, SP, #4

Store R2, (SP)

Call LISTADD Call subroutine

Load R2, 4(SP) Get the result from the stack

Store R2, SUM Store the result in SUM

Add SP, SP, #8 Restore top of stack

• Consider the calling program that calls the subroutine

LISTADD to add a list of n numbers, in which

– The size n is stored in memory location/address N, and

– NUM1 is the memory address for the first number.

• Are N and NUM1 passed as values or references?

Summary

• Revisit: Assembly Language Basics

• Program Execution

– Flow for Generating/Executing a Program

– Instruction Execution and Sequencing

– Branching

• Condition Codes

– Subroutines

• Stack

• Subroutine Linkage

• Subroutine Nesting

• Parameter Passing

CSCI2510 Lec05: Program Execution 2022-23 T1 58

